[14815 — DT-Agro]

HERI

Hellenic Foundation for
Research & Innovation

HELLENIC REPUBLIC

MINISTRY OF DEVELOPMENT

GENERAL SECRETARIAT FOR RESEARCH AND
INNOVATION

HELLENIC FOUNDATION FOR RESEARCH AND
INNOVATION

Greece 2.0 NATIONAL RECOVERY AND RESILIENCE PLAN
“BASIC RESEARCH FINANCING” (Horizontal support for all Sciences)
ID 16618 — Subproject 1 (MIS: 5163923)

D3.2 Report and tools for EO data acquisition, processing, and
transformation

DAy @

ID 14815

Funded by the
European Union
NextGenerationEU

Greece 2.0

NATIONAL RECOVERY AND RESILIENCE PLAN

_ D32 un o 1|2
[RRF - D3.2] Greece 2.0 [=r. 17

NextGenerationEU

https://greece20.gov.gr/

[14815 — DT-Agro]

Plan Details

Report and tools for EO data acquisition, processing, and transformation

Deliverable number: D3.2

Creation Date: 02/04/2025

Last modification date: 20/09/2025

Dissemination Level: Public

1. Introduction

This deliverable (D3.2) documents the implementation of the Earth Observation (EQO) data
workflows developed within Work Package 3 (WP3) to support the DT-Agro. Building on the
evaluation and selection of EO datasets presented in D3.1, this report focuses on the
streamlining of data acquisition, processing, and transformation procedures, as defined under
Task T3.3, so that the selected datasets are directly usable by the DT-Agro modeling and
spatial database infrastructure.

This report focuses on the operational tools, scripts, and procedures used for data
acquisition, preprocessing, transformation, and integration into the DT-Agro spatial database
and modeling framework. The objective of this deliverable is to demonstrate that a
standardized, automated, and reproducible EO data pipeline has been established, enabling
the consistent preparation of heterogeneous datasets for national-scale agro-hydrological
modeling. This work directly supports Milestone M3.1, i.e. the establishment of EO data flow
to DT-Agro. This data flow transforms heterogeneous EO products (NetCDF, GeoTIFF, gridded
reanalysis) into analysis-ready datasets aligned to the DT-Agro requirements (projection,
resolution, naming, and metadata).

Although the DT-Agro is described in detail in WP2 deliverables (D2.1 and D2.2), D3.2
includes the necessary context on how EO inputs are prepared and structured to enable
ingestion by the modelling framework. It integrates the outcomes of the evaluation activities
carried out under Task T3.2, where selected EO products were assessed and compared against
alternative sources and available reference data to quantify accuracy and identify limitations,
as well as the implementation activities of Task T3.3, which aimed to streamline data
acquisition and processing into reproducible, operational workflows.

2. Overview of Data Sources

The EO datasets processed under WP3 represent the key variables for DT-Agro
initialization, parameterization, evaluation and updating. These include:

e Meteorological data: Meteorological forcing is based on AgERA5 reanalysis data,
providing daily precipitation, mean air temperature and reference evapotranspiration.
AgERAS offers spatially continuous coverage and long temporal records, which are
essential for national-scale applications and historical analyses.

RRF_ D32 unde: e 2 23
[: Greece 2.0 [=wirer |

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NextGenerationEU

[14815 — DT-Agro]

e Soil datasets: Soil hydraulic and physical properties are derived from the Greek Soil
Map and complemented by global datasets from ISRIC and ESDAC. These datasets
provide the parameters required for soil water balance calculations, runoff estimation
and erosion modelling.

e Agricultural Parcel datasets: Incorporated through the Integrated Administration and
Control System (IACS) database. The IACS dataset provides parcel-level information
on declared crop types, agricultural land boundaries, and management-related
attributes, offering a high level of thematic detail for cultivated areas. Although IACS
is not an EO product, it constitutes a critical ancillary dataset that complements EO-
derived information

e Soil Moisture data: EO-based surface soil moisture products (currently supporting
evaluation and future assimilation) using Sentinel-1 & 2 Data, EU-DEM with
topography and soil moisture field measurements. These products support the
evaluation of antecedent moisture conditions and are used to characterize soil
wetness conditions and refine Curve Number (CN) estimates under varying moisture.

¢ Digital Elevation Model: Topographic information is derived from the Copernicus EU-
DEM. The DEM provides the basis for terrain analysis, hydrological routing, flow
accumulation and erosion-related calculations.

e Land Cover / Land Use: Land cover information is obtained from the Copernicus Land
Monitoring Service (CLMS), i.e. CORINE Land Cover (all available years) and CLC
Backbone (2018, 2021, 2023) to describe land cover patterns and temporal changes.
These data are complemented by IACS information in agricultural areas, which
provides field-level crop and management details.

e Imperviousness Density: CLMS imperviousness layers used to represent the fraction
of sealed surfaces. These fractions are directly used in the SCS-CN parameterization
and in the new runoff-generation method that explicitly integrates impervious areas
at cell level.

e NDVI: Vegetation dynamics are represented using NDVI products from the CLMS,
derived from Sentinel-3 observations and provided as 10-daily composites.

3. EO Data Acquisition Workflows - Tools and Scripts

The EO data pipeline was implemented primarily through automated Python workflows,
supported where necessary by ArcGIS Pro geoprocessing tools (ArcPy) for national-scale
raster management. The workflow was designed to be rerunnable, enabling both historical
reprocessing and future near-real-time updates.

Across datasets, the workflow includes automated acquisition via API or bulk download,
decoding and extraction (including unzipping and NetCDF handling), quality control and unit
conversions, harmonisation to DT-Agro spatial specifications, and export into standardized
formats for storage in the DT-Agro spatial database.

RRF_ D32 unde: e 3 23
[: Greece 2.0 [=wirer |

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NextGenerationEU

[14815 — DT-Agro]

The scripts rely on widely used open-source libraries (e.g. xarray, netCDF4, pandas,
rasterio, geopandas) and produce outputs in GeoTIFF for rasters and CSV for station series
and aggregated time series. Intermediate products are stored in structured directories and
naming conventions (dataset, variable, year, version) to ensure traceability.

To ensure spatial consistency across all EO inputs, datasets were harmonised to the same
projection i.e. EGSA87 / Greek Grid (EPSG:2100) and analysis resolution of 100 m (static and
agro-hydrological layers), with support for coarser grids where required by forcing data.

3.1 Meteorological data acquisition and preprocessing

Meteorological EO forcing data were acquired from the Copernicus Climate Data Store
(CDS) using the AgERAS reanalysis dataset. After assessing multiple criteria, the project team
selected the AgERAS dataset as the primary Earth Observation-based meteorological data
source for DT-Agro.

AgERAGS is a climate reanalysis product developed under the Copernicus Climate Change
Service (C3S) and derived from ERAS5, providing daily global agrometeorological information
specifically tailored for agricultural and agro-ecological applications. The dataset covers the
period from 1979 to the present and includes key variables such as precipitation, air
temperature, solar radiation, wind speed, and reference evapotranspiration, at a spatial
resolution of 0.1°. Its long temporal coverage, internal consistency, and direct availability
through the Copernicus Climate Data Store (CDS) make it suitable for national-scale agro-
hydrological modelling and Digital Twin applications. Within DT-Agro, AgERAS provides the
core meteorological forcing required for hydrological balance calculations,
evapotranspiration estimation, and crop water demand assessment.

3.1.1 Data Extraction

Automated retrieval was implemented using the CDS APl and Python scripting. Daily time
series are extracted at the exact point locations of 140 meteorological stations operated by
the Hellenic National Meteorological Service (HNMS). The geographic coordinates of all
stations were expressed in the WGS84 reference system (latitude and longitude), and each
station was associated with a unique identifier that was preserved throughout the entire data
acquisition and processing workflow to ensure full traceability. Variables downloaded include
2 m mean air temperature, precipitation flux (converted to daily precipitation depth where
required), and reference evapotranspiration (used for ET and crop-water modules).

To comply with CDS request limitations and avoid oversized downloads, data retrieval was
structured on a year-by-year basis for all stations. Each request returned a compressed .zip
archive containing NetCDF files with daily time series for the requested variable, year, and
station. Files were named systematically to include the variable type, year, and station
identifier (indicatively 2m_temperature 1979 16600.0.zip,
precipitation_flux_1979_16600.0.zip, reference_evapotranspiration_1979_16600.0.zip).
Separate Python scripts were developed for the extraction of air temperature, precipitation
flux, and reference evapotranspiration

RRF - D32 unde: e 4 23
[: Greece 2.0 [=wirer |

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NextGenerationEU

[14815 — DT-Agro]

3.1.2 Preprocessing and Format Transformation

Once downloaded, all data were processed using Python workflows. The .zip archives
were automatically extracted, and the contained NetCDF files were handled using the xarray
and pandas libraries. Although NetCDF files can also be opened using GIS software such as
QGIS, this option was not used in the present project.

Additional preprocessing steps were applied. Air temperature values were converted
from Kelvin to degrees Celsius, while precipitation and evapotranspiration units were verified
to ensure consistency with hydrological modelling requirements. All processed data were
reorganized into station-specific folders and exported as CSV files, maintaining the same
systematic naming convention to preserve the link between variable, year, and station.

The meteorological workflow was designed to support both gridded forcing and point-
based extractions for later bias correction and evaluation activities. Detailed evaluation
methodologies (e.g. performance metrics) are reported in WP5.

3.1.3 Evaluation of AgERAS against Meteorological Observations

As part of the EO data assessment activities, an evaluation procedure was implemented
to examine the consistency and reliability of the AgERAS reanalysis dataset against ground-
based meteorological observations over Greece. The objective of this analysis was to assess
potential biases and uncertainties in AgERAS prior to its operational use within the DT-Agro,
and to inform subsequent bias-correction and interpolation strategies.

The year 2023 was selected for the evaluation, as it represents the most recent period
with relatively complete and spatially representative station records across Greece. From the
full AgERAS archive downloaded via the Copernicus CDS, only data corresponding to the year
2023 were used for validation against available station observations.

The evaluation focused on two key meteorological variables that are critical for agro-
hydrological modelling, i.e. daily 24-hour mean air temperature, and daily precipitation. For
consistency with hydrological and climatic analyses, daily AgERAS5 values were aggregated
into monthly mean temperature and monthly cumulative precipitation. Ground-based
observations from 777 meteorological stations distributed across Greece for the year 2023
were processed, ensuring that both datasets were compared on identical temporal scales.

Prior to comparison, unit standardization was applied. Air temperature values provided
by AgERA5 in Kelvin were converted to degrees Celsius, while precipitation values were
verified to be expressed in millimeters. For the spatial matching of datasets, the AgERAS grid
cell corresponding to each station location was identified using nearest-neighbor extraction,
whereby each station was assigned the value of the closest AgERAS5 grid point for each month.

The comparison between AgERAS5 and station observations was designed to quantify
systematic and random errors, as well as the ability of the reanalysis dataset to reproduce
observed temporal variability. To this end, a set of standard statistical indicators was defined,
including bias, mean absolute error (MAE), root mean square error (RMSE), and the Pearson

RRF_ D32 unde: e 5 23
[: Greece 2.0 [=wirer |

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NextGenerationEU

[14815 — DT-Agro]

correlation coefficient. These metrics were computed separately for temperature and
precipitation and summarized across stations using descriptive statistics and graphical
diagnostics.

The evaluation procedure provides a methodological foundation for assessing the
suitability of AgERAS for agricultural and hydrological applications in Greece. While the full
guantitative results and their spatial interpretation are presented in Deliverable D5.2, the
methodological framework established here supports Task T3.2 and ensures that EO
meteorological inputs integrated into DT-Agro are critically evaluated prior to operational
use.

3.2 Soil Data acquisition, processing and integration

Within WP3, soil datasets were selected, harmonised, and transformed to ensure spatial
consistency, computational efficiency, and compatibility with EO-driven workflows and the
DT-Agro modelling core.

Soil data were compiled from multiple sources to ensure full spatial coverage of Greece
and to support the derivation of Curve Number (CN) values and the soil hydraulic properties
required by the DT-Agro. The primary source of soil information was the Greek Soil Map at a
scale of 1:30,000 (OPEKEPE, n.d.). To complement this national dataset and address spatial
gaps, additional EO soil information was obtained from the European Soil Database v2.0 at a
scale of 1:1,000,000 (Panagos et al., 2012) and from top-soil physical property datasets
derived from the LUCAS Land Use/Cover Area frame Survey (Panagos et al., 2012; Orgiazzi et
al., 2018).

Raster datasets from ISRIC SoilGrids, ESDAC, and the Greek national soil database were
first collected and harmonised. All datasets were subset to the topsoil layer (0-30 cm), clipped
to the Greek territory, and reprojected to the national reference system (EGSA87, EPSG:2100)
to ensure spatial consistency. The preprocessing workflow includes clipping to Greece,
reprojection to EPSG:2100, resampling to 100 m, and generating consistent soil property
rasters across sources for use in model parameter estimation converts soil texture and related
soil attributes into raster layers aligned to the DT-Agro grid. Key soil property values, namely
sand, silt, and clay percentages, were extracted at sampling point locations to enable direct
comparison between observed values from the Greek Soil Map and predicted values from the
international datasets.

Soil texture classes were assigned to each sampling point using the USDA soil texture
classification system. Texture classes derived from the international datasets were then
compared against those obtained from the Greek Soil Map. The agreement between datasets
was evaluated using categorical accuracy metrics, including producer’s accuracy, user’s
accuracy, and overall accuracy. This analysis provided a clear assessment of the suitability of
global soil datasets for applications in Greece and informed the selection and adjustment of
soil parameters used in DT-Agro. The evaluation of global datasets against the Greek Soil Map
is reported in WP5 deliverables.

RRF - D32 unde: e 6 23
[: Greece 2.0 [=wirer |

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NextGenerationEU

[14815 — DT-Agro]

3.3 Soil moisture

Soil moisture is included in the DT-Agro as a spatially explicit EO-derived dataset providing
estimates of near-surface soil water content over agricultural areas of Greece. The dataset is
generated through an automated processing workflow that integrates Sentinel-1 SAR
observations with optical vegetation information from Sentinel-2 NDVI products, ancillary
geospatial data, and in-situ soil moisture measurements for calibration and validation.

Sentinel-1 SAR data are preprocessed using standard radiometric calibration, noise
removal, speckle filtering, and terrain correction procedures based on the Copernicus EU-
DEM. Vegetation effects on radar backscatter are accounted for using NDVI, enabling the
isolation of the soil signal. A machine-learning model, trained on in-situ observations and EO-
derived predictors, is then applied to produce gridded soil moisture estimates.

All soil moisture products are reprojected to EGSA87 (EPSG:2100), harmonised to the DT-
Agro spatial grid, and stored as georeferenced raster layers. These datasets are directly
integrated into the DT-Agro model and support hydrological modeling, crop water balance
assessment, and irrigation analysis. The workflow is fully reproducible and designed to
support future extensions, including enhanced validation and climate-related applications.
These datasets are suitable for use in soil water balance assessment, irrigation monitoring
and model evaluation.

3.4 NDVI acquisition, decoding, harmonisation, and derivation of Kc and ETc

As part of the EO data acquisition and processing, vegetation index data were
incorporated to support vegetation monitoring, evapotranspiration modeling and CN
estimation within the framework of DT-Agro. The Normalized Difference Vegetation Index
(NDVI) datasets were obtained from the Copernicus Land Monitoring Service (CLMS),
specifically the Global NDVI 300 m Version 2 product (Copernicus Land Monitoring Service,
2021). The dataset is derived from Sentinel-3/OLCI optical observations and provides global
10-daily composites of BRDF-normalized, top-of-canopy reflectances.

Data were downloaded automatically using Python scripts, which interact with the CLMS
APl and the Copernicus Global Land Service (CGLS) data portal. The downloaded files are
provided in NetCDF4 format following Climate and Forecast (CF) v1.6 metadata conventions
and include NDVI values, associated uncertainty (NDVI_unc), number of observations (NOBS),
and quality flags (QFLAG). Each NDVI file corresponds to a 10-day period (days 1-10, 11-20,
and 21-end of month), with filenames indicating the start date of the period. The original
product is provided on a global regular latitude/longitude grid (EPSG:4326) with a spatial
resolution of 1/336° (~300 m), referenced to the WGS84 ellipsoid. Physical NDVI values were
recovered programmatically using the scaling relation provided by the product
documentation:

NDVI_real = (DN x 0.004) - 0.08.

RRF - D32 unde: e 7 23
[: Greece 2.0 [=wirer |

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NextGenerationEU

[14815 — DT-Agro]

Invalid and non-terrestrial pixels were filtered based on the product flags and reserved
digital values (e.g. missing data and sea masks). This scaling means that DN = 0 corresponds
to NDVI = -0.08 and DN = 250 corresponds to NDVI = 0.92. The conversion was performed
automatically within the Python preprocessing workflow using xarray and rasterio libraries.
Pixels representing sea, missing data, or invalid reflectance values were filtered according to
the metadata flags (e.g., NDVI = 255 for missing data, NDVI = 254 for sea).

After decoding, NDVI rasters were clipped to Greece, reprojected to EPSG:2100, and
resampled to 100 m to match the DT-Agro modelling grid. Additionally, harmonised NDVI
products were used to derive indicative crop coefficient (Kc) maps. Since Kc depends on land
cover and crop type, the workflow supports crop-specific formulations. Indicatively, the
relationship proposed by Montgomery et al. (2015) was adopted for cotton under conditions
similar to Greece. Combined with reference evapotranspiration (ET,) from AgERAS, the NDVI-
derived Kc supports the generation of ETc layers for use in evapotranspiration and crop-water
balance modules. Kc values are assigned from a knowledge base for each land-cover / crop
type and are dynamically adjusted using NDVI, capturing intra-seasonal variations in crop
development and canopy cover.

3.5 Land cover and Imperviousness density preprocessing

CORINE Land Cover (CLC) data were used in DT-Agro to provide consistent spatial
information on land use and land cover for parameterization of hydrological, crop, and soil
erosion processes. CLC Backbone datasets for the reference years 2018, 2021, and 2023 were
obtained from the CLMS and processed through a standardized preprocessing workflow to
ensure compatibility with other EO-derived and ancillary datasets. All land cover products
were harmonised to provide consistent national coverage and support hydrological
parameterization.

All CLC datasets were spatially subset to the Greek territory, including a small buffer zone
to avoid edge effects during resampling and routing operations. The datasets were then
reprojected from their native geographic coordinate system (EPSG:4326) to the national
reference system EGSA87 (EPSG:2100), which is used consistently across the DT-Agro spatial
database. This reprojection ensured spatial consistency with soil maps, DEM derivatives,
meteorological grids, and other EO layers.

Regarding the CLC Backbone 2018 and 2021 datasets, rasters were reprojected to EGSA87
(EPSG:2100), resampled from 10 m to 100 m (categorical resampling), and clipped to a
national mask so that all layers share identical spatial extent and grid alignment. A key
processing issue was the difference between years. The 2023 CLC Backbone was downloaded
as tiles (AOI: Greece) from the WEKEOQ platform and required automated merging using ArcPy,
followed by reprojection to EGSA87, resampling to 100 m, and extraction by the national
boundary. The tiling issue was resolved through an ArcPy-based mosaic workflow, which
merged tiles into a single seamless raster for Greece. The 2018 and 2021 products were
harmonized through equivalent reprojection, resampling, and clipping procedures.

RRF - D32 unde: e 8 23
[: Greece 2.0 [=wirer |

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NextGenerationEU

[14815 — DT-Agro]

Imperviousness density information was incorporated into the DT-Agro to explicitly
represent the spatial distribution of sealed surfaces and to support hydrological
parameterization, particularly the estimation of surface runoff through the SCS-CN
methodology. Imperviousness data were obtained from the CLMS High Resolution Layer (HRL)
Imperviousness Density products, which provide percentage estimates of sealed surfaces at
high spatial resolution. As a first preprocessing step, the datasets were clipped to the
territorial extent of Greece and reprojected to the national coordinate system EGSA87
(EPSG:2100) to ensure consistency with all other EO and ancillary datasets used in the project.

The resulting imperviousness density maps provide, for each 100 m grid cell, the fraction
of impervious area expressed as a percentage. These layers are directly used in the DT-Agro
hydrological module to support the explicit separation of each grid cell into pervious and
impervious sub-areas. In this framework, the impervious fraction is assigned a CN equal to
100, while the remaining pervious fraction is characterized by land-cover- and soil-dependent
CN values.

All preprocessed imperviousness density layers were stored in the common DT-Agro
spatial database together with land cover, soil, and topographic datasets. The standardized
projection, resolution, and file structure allow imperviousness information to be seamlessly
combined with other EO-derived inputs and to be updated in future runs if newer Copernicus
HRL products become available.

3.6 DEM preprocessing and terrain derivatives

Topography was derived from the Copernicus EU-DEM. The DEM was clipped to Greece,
reprojected to EGSA87, and resampled to 100 m to match the modelling grid. From the
harmonised DEM, terrain derivatives were generated to support hydrological routing and
erosion modelling, including fill DEM, slope, flow direction, flow accumulation, flow length,
and additional routing-related indices required by the modelling framework. For these key
terrain ArcGIS Pro was used.

4. Validation and Accuracy checks

The WP3 workflows incorporate consistency checks at multiple stages to ensure that
processed EQ layers are usable and physically plausible. These checks include:

e verification of units and scaling transformations (e.g. NDVI scaling, temperature unit
conversion),

e spatial alignment checks (extent, projection, resolution),

e inspection of missing-data patterns and quality masks, and

e verification that categorical resampling preserves land cover class distributions at 100
m.

More advanced validation of EO products against observations (e.g. reanalysis evaluation, soil
dataset accuracy assessments) is documented in later deliverables, as it pertains to system
functioning and interpretation rather than the operational data pipeline.

RRF_ D32 unde: e 9 23
[: Greece 2.0 [=wirer |

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NextGenerationEU

[14815 — DT-Agro]

5. Integration into the DT-Agro

All EO data and in-situ, processed within WP3 are integrated into the DT-Agro through a
unified spatial data infrastructure that ensures consistency, traceability, and operational
compatibility with the model core. The integration framework is designed to allow
heterogeneous datasets, differing in spatial resolution, temporal frequency, and source, to be
harmonised and ingested seamlessly into the DT-Agro modelling environment. Workflows
developed are designed to support dynamic datasets. Time-varying datasets such as
meteorological variables (AgERAS5 temperature, precipitation, reference evapotranspiration),
vegetation indices (NDVI), soil moisture, and land surface characteristics are handled through
automated scripts that are structured by date, period, and version, allowing new data to be
appended seamlessly to existing archives.

The integration involves a harmonised spatial database, where all datasets are stored in
standardized formats, projections, and resolutions. This harmonisation ensures that each grid
cell represents a consistent spatial unit across all DT-Agro components.

Meteorological datasets, including bias-corrected precipitation, temperature, and
reference evapotranspiration, are integrated as gridded daily time series on the
meteorological grid. These datasets provide the primary atmospheric forcing for the
hydrological and crop water balance modules. The spatial database links each agro-
hydrological grid cell to the corresponding meteorological cell, enabling efficient data access
during model execution without repeated spatial interpolation.

Soil datasets, compiled from the Greek Soil Map, ISRIC SoilGrids, and ESDAC, are
integrated as static parameter layers describing soil texture, hydraulic properties, water
holding capacity, and erodibility factors. These layers feed directly into multiple DT-Agro
processes, including CN estimation, soil moisture dynamics, deep percolation calculations,
and soil erosion modelling. The soil layers ensure that all model components rely on a
consistent representation of subsurface properties.

Land cover and land use information from CORINE Land Cover and CLC Backbone
products, complemented by IACS parcel-level data where available, are integrated as
categorical raster layers and vector datasets. These datasets control land-surface
parameterization, crop identification, and management practices within DT-Agro. They are
used to assign crop coefficients (Kc), vegetation parameters, CN for pervious areas, and cover-
management factors for erosion modelling. Temporal versions of land cover datasets allow
the system to reflect land-use changes over time.

Imperviousness density layers from the Copernicus HRL are integrated as continuous
raster datasets representing the fraction of sealed surfaces within each grid cell. These layers
are directly coupled with the runoff-generation algorithms, enabling the explicit separation
of pervious and impervious sub-areas within each cell. This integration significantly improves
runoff estimation in urban, peri-urban, and infrastructure-affected areas.

RRF - D32 unde: e 10 23
[: Greece 2.0 [=wirer |

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NextGenerationEU

[14815 — DT-Agro]

NDVI from the CLMS, are integrated as time-varying rasters. These datasets dynamically
update vegetation-related parameters, such as crop coefficients (Kc) and cover factors (C),
enabling DT-Agro to represent seasonal crop development and spatial variability in vegetation
condition. NDVI-derived parameters are accessed by crop growth, evapotranspiration, and
erosion modules during each simulation step.

Surface soil moisture datasets derived from Sentinel-1 SAR and supporting EO products
are integrated as auxiliary dynamic layers. At the current stage, these datasets are used
primarily for model evaluation, calibration support, and consistency checks of simulated soil
moisture patterns. The integration framework is designed to allow future use of EO soil
moisture for state updating and data assimilation once methodological development is
finalized.

This organization enables reproducibility, supports reprocessing when updated EO
products become available, and allows the DT-Agro to evolve from historical simulations
toward near-real-time and scenario-based applications. Through this structured integration
approach, the spatial database connects EO data acquisition workflows with the DT-Agro
modelling core, ensuring that all processed datasets are operationally exploitable within the
Digital Twin framework.

6. Climate change impact and mitigation and adaptation strategies

Although the climate change impact, mitigation and adaptation strategies are planned for
the end of the project, the methodological foundation has already been established. The
datasets, techniques and modeling workflows form the basis for future simulations under
different climatic conditions.

Due to technical challenges faced during data acquisition, preprocessing and model
implementation, as well as limited time available during the reporting period, a complete
climate scenario could not be implemented at this stage.

Nevertheless, the system has been designed to support this functionality. The established
workflow allows the replacement of historical or near-real-time meteorological inputs with
projected datasets (e.g., AgERA5-derived climate scenarios or downscaled regional climate
model outputs). This will enable the estimation of future crop water demand,
evapotranspiration patterns, and potential impacts on irrigation requirements once the data
for 2024 and beyond become available.

7. Field data supporting EO evaluation and model validation

In parallel with EO workflows, multiple field campaigns were conducted to support
calibration and validation of EO products and model outputs. During the reporting period,
targeted field visits were conducted in representative agricultural regions of Greece. In
particular, during summer 2024, field campaigns were organized in the areas of Katerini and
Kavala, where data on irrigation water consumption and agricultural water management
practices were collected in cooperation with local stakeholders and irrigation organizations.

RRF_D32 unde: e 11 23
[: Greece 2.0 [=wirer |

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NextGenerationEU

[14815 — DT-Agro]

These data were used to support the evaluation of model inputs related to irrigation demand
and to provide reference information for EO-based indicators.

Additionally, an operational network of soil moisture monitoring stations was used to
provide in-situ measurements for the calibration and validation of EO-derived soil moisture
products. These station observations were essential for assessing the consistency and
reliability of satellite-based soil moisture estimates and for supporting the development of
automated soil moisture processing workflows described in earlier sections of this
deliverable. The station data were spatially matched with EO products and model outputs to
enable quantitative comparison and performance assessment.

Additional field campaigns focusing on more extensive soil moisture measurements, UAV-
based water stress indicators, crop condition assessment, and irrigation system performance
were under preparation during the reporting period and are planned to be implemented after
April 2025. These activities form part of the continuation of the project within the associated
doctoral research programme and will further strengthen model validation and EO evaluation
in subsequent phases.

Overall, the field data collected up to April 2025 provide a solid empirical basis for
evaluating EO datasets and supporting the initial calibration and validation of DT-Agro. The
established field-data acquisition framework ensures that future measurements can be
seamlessly integrated into the existing EO and modelling workflows, enhancing the
robustness and operational readiness of the Digital Twin. These efforts complement the
operation of approximately 43—-45 soil moisture stations, and all collected datasets were
organized for integration into the project database.

8. Tools, Scripts, and Documentation

The Python scripts developed for EO data acquisition, preprocessing, and transformation
are provided in an Annex to this deliverable. These scripts document:

e data access methods and APls,

e preprocessing steps for each dataset,
e spatial harmonisation procedures, and
o export formats used for integration.

The inclusion of scripts ensures transparency, reproducibility, and transferability of the
EO workflows and supports future extensions of DT-Agro. Scripts are available in the Annex.

9. Conclusions

Deliverable D3.2 documents the successful implementation of a standardized and
operational framework for the acquisition, processing, transformation, and integration of EO
and ancillary datasets into the DT-Agro. Building upon the data selection and evaluation
presented in Deliverable D3.1, this deliverable focuses on the practical realization of

RRF_ D32 unde: e 12 23
[: Greece 2.0 [=wirer |

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NextGenerationEU

[14815 — DT-Agro]

reproducible workflows that transform heterogeneous EO products into harmonised inputs
ready for use within the DT-Agro spatial database and modeling environment.

Through the development of automated, script-based workflows, EO datasets covering
meteorological conditions (AgERA5), vegetation dynamics (NDVI), land cover and
imperviousness (CLMS), soil properties (Greek Soil Map, ISRIC, ESDAC), topography (EU-DEM),
and auxiliary datasets (including IACS and in-situ station metadata) were systematically
acquired, preprocessed, and standardized. All datasets were reprojected to a common spatial
reference system (EPSG:2100), resampled to the target spatial resolutions (100 m for agro-
hydrological variables and 1 km for meteorological forcings), and organized in consistent
formats (GeoTIFF, CSV) suitable for direct ingestion by DT-Agro.

Emphasis was placed on streamlining workflows for large and temporally extensive
datasets. The use of Python-based tools enabled automated downloading via APIs, structured
handling of compressed archives, transformation of NetCDF products into analysis-ready
formats, and repeatable preprocessing chains. This approach ensures transparency,
traceability, and reproducibility of all EO data handling steps, while minimizing manual
intervention and reducing the risk of processing errors.

In parallel, evaluation activities were embedded within the data pipeline, including the
comparison of AgERAS meteorological variables against ground-based observations for the
year 2023 and the cross-comparison of soil datasets from national and international sources.
These assessments informed dataset selection and preprocessing choices and ensured that
the EO inputs meet the accuracy and consistency requirements of downstream agro-
hydrological modeling.

The processed datasets are integrated into DT-Agro through a centralized spatial database
that supports both static and time-varying inputs. The adopted data structures and workflows
explicitly support temporal scalability: the same scripts and procedures can be re-executed
as new EO observations, updated reanalysis products, or additional in-situ data become
available. This design enables DT-Agro to operate with dynamically evolving datasets,
supporting historical reprocessing, near-real-time updates, and future scenario-based
applications without modification of the core workflows.

Overall, Deliverable D3.2 confirms the establishment of a functional and standardized EO
data flow to DT-Agro, fulfilling Milestone M3.1. The implemented pipelines provide a robust
technical foundation for the Digital Twin, ensuring that EO data acquisition, processing, and
transformation are operational, scalable, and fully aligned with the requirements of
subsequent work packages. As the project continues within the framework of the associated
doctoral programme, these workflows will be further extended to incorporate additional
datasets, longer time series, and climate scenario inputs, strengthening the role of DT-Agro
as a dynamic, EO-driven Digital Twin for the Greek agro-hydro-system.

RRF_ D32 unde: e 13 23
[: Greece 2.0 [=wirer |

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NextGenerationEU

[14815 — DT-Agro]

References

Copernicus Land Monitoring Service (2021). Normalised Difference Vegetation Index 2020—
present (raster 300 m), global, 10-daily — version 2. European Commission's Joint
Research Centre. DOI: 10.2909/ae760a70-708e-459a-8eec-6852462a5faf

Montgomery, J., Hornbuckle, J., Hume, I., & Vleeshouwer, J. (2015). IrriSAT — weather based
scheduling and benchmarking technology.

OPEKEPE Greek Payment and Control Agency for Guidance and Guarantee Community Aid.
Available online: https://www.opekepe.gr/opekepe-organisation-gr/opekepe-e-
services-gr/pliroforiaka-systimata/gewpliroforiako-systimaedafologikwn-
dedomenwn (accessed on 08.01.2025).

Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Ferndandez-Ugalde, O. LUCAS Soil, the largest
expandable soil dataset for Europe: A review. Eur. J. Soil Sci. 2018, 69, 140—-153.

Panagos, P.; van Liedekerke, M.; Jones, A.; Montanarella, L. European Soil Data Centre:
Response to European policy support and public data requirements. Land Use Policy
2012, 29, 329-338.

RRF_D32 | unde: e 14 23
[] Greece 2 0 e !

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NextGenerationEU

https://doi.org/10.2909/ae760a70-708e-459a-8eec-6852462a5faf

[14815 — DT-Agro]

Annex

[Python]

import pandas as pd

import cdsapi

import os

stations = pd.read csv("stations.csv")
print (f"Loaded {len(stations)} stations.")
client = cdsapi.Client ()

output dir = "sis daily data temperature"
os.makedirs (output dir, exist ok=True)
print (f"Output folder: {output dir}")

variable = "2m temperature"

years = list(range (1979, 2025)) # 1979-2024
months = [£f"{m:02d}" for m in range(l, 13)]
days = [f"{d:02d}" for d in range(l, 32)]

for i, row in stations.iterrows() :
station id = row["id"]
lat, lon = row["lat"], row["lon"]
print (£"\n[{i+1}/{len(stations)}] Processing station {station_id} at ({lat}, {lon})")
for year in years:
filename = os.path.join(output dir, f"{variable} {year} {station id}.nc")

print (£" Downloading {filename} ...")
request = {
"variable": [variable],
"statistic": ["24 hour mean"],
"year": [str(year)],

"month": months,
"day": days,

"format": "netcdf",
"area": [lat+0.05, lon-0.05, lat-0.05, lon+0.05],
"version": "2 0"

try:

client.retrieve ("sis-agrometeorological-indicators", request, filename)
print (£" Finished {variable} for {year}")
except Exception as e:
print (£" ERROR: {variable} for {year}: {e}")
print ("\nAll stations processed.")

Downloading the parameter of 24h Mean Temperature for 140 stations

[Python]

import pandas as pd

import cdsapi

import os

stations = pd.read csv (r"C:\Users\GISlab\Documents\EAIAEK\DT-Agro model\Data\stations.csv")

print (f"Loaded {len(stations)} stations.")
client = cdsapi.Client ()

output dir = "sis daily data precipitation"
os.makedirs (output dir, exist ok=True)
print (f"Output folder: {output dir}")

variable = "precipitation flux"
years = list (range (1979, 2025)) # 1979-2024
months = [£"{m:02d}" for m in range(l, 13)]

days = [f£"{d:02d}" for d in range(l, 32)]
for i, row in stations.iterrows() :
station id = row["id"]
lat, lon = row["lat"], row["lon"]

RRF-D3.2 unde e 15|23
[] Greece 2 - Eur:p:a?\yl;:ion |

NATIONAL RECOVERY AND RESILIENCE PLAN NextGenerationEU

[14815 — DT-Agro]

print (f"\n[{i+1}/{len(stations)}] Processing station {station id} at ({lat}, {lon})")
for year in years:
filename = os.path.join (output dir, f"{variable} {year} {station id}.nc")
print (£" Downloading {filename} ...")
request = {
"variable": [precipitation flux],
"year": [str(year)],
"month": months,
"day": days,
"format": "zip",
"area": [lat+0.05, lon-0.05, 1lat-0.05, lon+0.05],
"version": "2 Q"
}
try:
client.retrieve ("sis-agrometeorological-indicators", request, filename)

print (£"
except Exception as e:
print (£" ERROR:

print ("\nAll stations processed.")

{variable} for {year}:

Finished {variable} for {year}")

{e}™)

Downloading the parameter of Precipitation Flux for 140 stations

[Python]

import pandas as pd
import cdsapi
import os
stations =
Columns: id, lat,
print (f"Loaded {len(stations)}
client = cdsapi.Client()
output dir = "sis daily data ETo"

lon

os.makedirs (output dir, exist ok=True)
{output dir}")

print (£"Output folder:

stations.")

pd.read csv(r"C:\Users\GISlab\Documents\EAIAEK\DT-Agro model\Data\stations.csv")

variable = "reference evapotranspiration"
years = list(range (1979, 2025)) # 1979-2024
months = [£"{m:02d}" for m in range(l, 13)]
days = [f"{d:02d}" for d in range(l, 32)]
for i, row in stations.iterrows () :
station id = row["id"]
lat, lon = row["lat"], row["lon"]
print (f"\n[{i+1}/{len(stations)}] Processing station {station_ id} at ({lat}, {lon})")
for year in years:
filename = os.path.join(output dir, f"{variable} {year} {station id}.nc")
print (£" Downloading {filename} LS|
request = {
"variable": [variable],
"year": [str(year)],
"month": months,
"day": days,
"format": "zip",
"area": [lat+0.05, lon-0.05, lat-0.05, lon+0.057],
"version": "2 0"
}
try:
client.retrieve ("sis-agrometeorological-indicators", request, filename)

print (£"
except Exception as e:
print (£" ERROR:

print ("\nAll stations processed.")

{variable} for {year}:

Finished {variable} for {year}")

{e}l™)

Downloading the parameter of Reference Evapotranspiration ET, for 140 stations

import pandas as pd

import glob

[RRF - D3.2]

Greece 2

NATIONAL RECOVERY AND RESILIENCE PLAN

Funded by the
European Union
NextGenerationEU

16|23

[14815 — DT-Agro]

import os
input folder =
r"C:\Users\GISlab\cds downloads\2023\2mMeanTemp23\csv_output\converted xlsx\converted celsius"

output file = "monthly mean temperature2023.csv"
all files = glob.glob(os.path.join(input folder, "*.xlsx"))
all daily = []

for £ in all files:
df = pd.read excel (f)
df ["time"] = pd.to datetime(df(["time"])
df ["year month"] = df["time"].dt.to period("M").dt.to timestamp ()
all daily.append (df)
daily all = pd.concat(all daily, ignore index=True)
monthly all = daily all.groupby(["year month", "lat",
"lon"]) ["TempMean24h Celsius"].mean () .reset index()
monthly all.to csv(output file, index=False)
print ("Monthly mean temperature saved to monthly mean temperature2023.csv")

Aggregating daily temperature data to monthly mean temperature for the year 2023

[Python]

import os
import zipfile
zip folder = r"C:\Users\GISlab\Documents\EAIAEK\DT-
Agro model\Data\sis daily data_ temperature froml6707\zip files"
output folder = r"C:\Users\GISlab\Documents\EATAEK\cds"
os.makedirs (output folder, exist ok=True)
for file in os.listdir(zip_folder) :
if file.endswith(".zip"):

zip path = os.path.join(zip_ folder, file)

folder name = os.path.splitext(file) [0]

extract to = os.path.join(output folder, folder name)

os.makedirs (extract to, exist ok=True)

print (f"Extracting {file} - {extract to}")

with zipfile.ZipFile(zip path, 'r') as zip ref:

zip ref.extractall (extract to)

print ("All ZIP files extracted into individual folders.")

Unzip files

[Python]

import os

import zipfile
import xarray as xr
import datetime

print ('Start:',datetime.datetime.now())

def isleap(year):
return bool ((not year%4 and year%$100) or not year%400)

def make dates(start year,end year):
months=[[3,0,3,2,3,2,3,3,2,3,2,31,103,1,3,2,3,2,3,3,2,3,2,311
return [datetime.date(y,m,d) for y in range(start year,end year+l) for m in range(1l,13)
for d in range(l,29+months[isleap(y)][m-1])]

inputl=r'C:\Users\GISlab\agera5 rain\unzip'
input2=r"'’'

output folder=r'C:\Users\GISlab\agera5 rain\csv'
data_name='Precipitation Flux'
os.makedirs (output folder,exist ok=True)

def read value (ncfile):
with xr.open dataset(ncfile) as ds:

RRF-D3.2 unde e 17|23
[] Greece 2 - Eur:p:a?\yl;:ion |

NATIONAL RECOVERY AND RESILIENCE PLAN NextGenerationEU

[14815 — DT-Agro]

return float (ds[data name] .values[0,0,0])
stations={}

def add stations (input folder):
if not input folder:
return
for i in os.listdir (input folder):
folder=os.path.join (input folder, i)
code=1i[24:29]
year=int (i[19:23])
if code not in stations:
stations[code]={}
for j in os.listdir(folder):
month=int (j[45:471])
day=int (j[47:49])
date=datetime.date (year,month, day)
stations[code] [date]l=o0s.path.join(folder, j)

add_stations (inputl)
add stations (input2)

dates=make dates(1979,2024)
dateset=set (dates)

issues={}

for i in stations:
if set(stations[i].keys()) !=dateset:
issues[i]=[]
for j in dates:
if j not in stations[i]:
issues[i].append(j)

if issues:
print (f'Found issues with {len(issues)} stations',end='")
if len (issues)<50:
print (':\n")
for i in issues:
print (i)
else:
print ('. Check logfile.')
with open('logfile.txt','w') as file:
for i in issues:
file.write(f'{i}\n")

for i in stations:

with open (os.path.join (output folder,f'station rain {i}.csv'),'w') as csv:

for j in dates:
if j.year==1979 and j.month==1 and j.day==1:

print (f'Entering station {i} on:',datetime.datetime.now())

if j in stations[i]:

csv.write (£'{Jj}, {read value (stations[i][j])}\n")

else:
csv.write(f'{j},\n")

print ('End:',datetime.datetime.now())

NetCDF to .csv

[ArcPy]

import arcpy
import os

[RRF - D3.2]

Greece 2

NATIONAL RECOVERY AND RESILIENCE PLAN

Funded by the
European Union
NextGenerationEU

18|23

[14815 — DT-Agro]

input root = r"C:\Users\GISlab\DT-Agro Data\ CLCplus RAS2023\Reproj"
output_root = r"C:\Users\GISlab\DT-Agro_Data\ CLCplus_RAS2023\Resam"
merged output = r"C:\Users\GISlab\DT-Agro Data\ CLCplus RAS2023\Merged RAS 2023EGSA87.tif"

new cellsize = "100"
resample method = "NEAREST"
target sr = arcpy.SpatialReference (2100)

arcpy.env.overwriteOutput = True
if not os.path.exists (output root):
os.makedirs (output root)

def resample all (input folder, output folder):
resampled list = []

for dirpath, dirnames, filenames in os.walk(input folder) :
for filename in filenames:
if filename.lower () .endswith(".tif"):
in raster = os.path.join(dirpath, filename)

rel path = os.path.relpath(dirpath, input folder)
out dir = os.path.join(output folder, rel path)
if not os.path.exists(out dir):

os.makedirs (out_dir)

out raster = os.path.join(
out dir, os.path.splitext(filename) [0] + " 100m.tif"

print (f"Resampling: {in raster}")
try:
arcpy.management .Resample (
in raster,
out raster,
new cellsize,
resample method
)
resampled list.append(out raster)
print (f" Saved: {out raster}")
except Exception as e:
print (£" Failed: {in raster}\n {el™)

return resampled list

def merge rasters(raster list, output raster):
if not raster list:
print ("No rasters found to merge!")
return

print ("Merging all resampled rasters...")
try:
arcpy.management .MosaicToNewRaster (
inputs=raster list,
output location=os.path.dirname (output raster),
raster dataset name with extension=os.path.basename (output raster),
coordinate system for the raster=target sr,
pixel type="8 BIT UNSIGNED",
cellsize=new cellsize,
number of bands=1,
mosaic _method="FIRST"
)
print (f"Merged raster saved at: {output raster}")
except Exception as e:

RRF-D3.2 unde o 19123
[: Greece 2.0 = !

NATIONAL RECOVERY AND RESILIENCE PLAN NextGenerationEU

[14815 — DT-Agro]
print (f"Merge failed: {e}l")

print ("Starting resampling and merging...")

resampled rasters = resample all (input root, output root)
merge rasters (resampled rasters, merged output)

print ("Done. All rasters resampled and merged successfully.")

Reproject, Resample & Merge rasters

import os

import glob

import datetime as dt

import fiona

import rasterio

import rasterio.mask

import zipfile

from shapely.geometry import box

from terracatalogueclient import Catalogue

from terracatalogueclient.config import CatalogueConfig, CatalogueEnvironment
from terracatalogueclient.exceptions import SearchException

def crop(file path, out path=None) :
with fiona.open (r"C:/Users/GISlab/Documents/COPERNICUS/ SHAPE/POLYGON GREECE geo.shp",
"r") as shapefile:
shapes = [feature["geometry"] for feature in shapefile]
with rasterio.open(file path) as src:
out image, out transform = rasterio.mask.mask(src, shapes, crop=True)
out meta = src.meta.copy ()
out meta.update ({
"driver": "GTiff",
"height": out image.shape[l],
"width": out image.shape[2],
"transform": out transform
})
if out path is None:
base, ext = os.path.splitext(file path)
out path = f"{base} cropped{ext}"
with rasterio.open(out path, "w", **out meta) as dest:
dest.write (out image)
return out path

def extract zip(zip path, extract to):
try:
with zipfile.ZipFile(zip path, "r") as z:
z.extractall (extract_to)
return True
except Exception:
return False

collections = ["clms global ndvi 300m v2 10daily geotiff"]

config = CatalogueConfig.from environment (CatalogueEnvironment.CGLS)
catalogue = Catalogue (config)

start date = dt.date (2020, 7, 1)

end date = dt.date(2024, 12, 31)

aoli = box(19.09755, 34.55076, 30.15528, 41.9202)
aoi wkt = aoi.wkt

OUTPUT_BASE = r"C:/Users/GISlab/Documents/COPERNICUS/downloads"
os.makedirs (OUTPUT BASE, exist ok=True)

for collection id in collections:
available ids = {c.id for c in catalogue.get collections()}
if collection id not in available ids:

RRF-D3.2 unde o 20(23
[: Greece 2.0 = !

NATIONAL RECOVERY AND RESILIENCE PLAN NextGenerationEU

[14815 — DT-Agro]

print (f"Collection {collection id} not found.")
continue

try:
products = list (catalogue.get products (
collection id,
start=start date,
end=end date,
geometry=aoi wkt
))
except SearchException as e:
print (f"Search failed for {collection id}: {e}")
continue

print (f"{collection id}: Found {len (products)} products intersecting AOI (test range)")
if not products:
continue

out dir = os.path.join (OUTPUT BASE, collection id)
os.makedirs (out_dir, exist ok=True)

for idx, p in enumerate (products, 1):
print (£"\n[{idx}/{len (products)}] Requesting product: {p.id}")

before = set(glob.glob(os.path.join(out dir, "**"), recursive=True))

try:
catalogue.download products([p], out dir, file types=None, force=True)
except Exception as e:
print (f" Download failed for {p.id}: {e}")

continue
after = set(glob.glob(os.path.join(out dir, "**"), recursive=True))
new paths = [p for p in after - before if os.path.isfile(p)]

if not new_paths:

product folder = os.path.join(out dir, p.id)
if os.path.isdir (product folder) :
new paths = [f for f in glob.glob(os.path.join(product folder, "#**",6 "x* "),
recursive=True) if os.path.isfile(f)]

if not new_paths:
print (" No new files were detected after download. Check catalogue client output
or network.")
continue

extracted any = False
all files = []
for fp in new_paths:
all files.append (fp)
if fp.lower ().endswith(".zip"):
print (f" Extracting zip: {os.path.basename (fp)}")
extract dir = os.path.splitext (fp) [0]
ok = extract zip(fp, extract dir)

if ok:
extracted any = True
extracted files = [f for f in glob.glob(os.path.join(extract dir, "**",

"k *"), recursive=True) if os.path.isfile(f)]
all files.extend(extracted files)

if extracted any:
product folder = os.path.join(out dir, p.id)
if os.path.isdir (product folder):
all files += [f for f in glob.glob(os.path.join(product folder, "**", "* _xm),
recursive=True) if os.path.isfile(f)]

RRF-D3.2 unde o 2123
[: Greece 2.0 =

NATIONAL RECOVERY AND RESILIENCE PLAN NextGenerationEU

[14815 — DT-Agro]

tiff files = [f for f in all files if f.lower() .endswith((".tif", ".tiff"))]
if not tiff files:
print (" No TIFF files found in downloaded package. Found files:")
for £ in sorted(all files) [:20]:
print (" ", os.path.basename (f))
print (" If dataset provides NetCDFs, you may need a different workflow (extract

variable and rasterize).")
continue

for tif in tiff files:
try:
print (f" Cropping TIFF: {os.path.basename (tif)}")
cropped = crop(tif)

print (£" Saved cropped: {os.path.basename (cropped)}")
except Exception as e:
print (£" Crop failed for {tif}: {e}l")

print (f"\nFinished processing collection: {collection id}")

print ("\nDone.")

NDVI and other Copernicus Land Monitoring Systems’ data downloading

import os
import logging
from pathlib import Path

try:
from hda import Client, Configuration
except ImportError:
raise SystemExit ("Missing 'hda' package. Install with: pip install hda")

logging.basicConfig(level=logging.INFO, format="% (asctime)s % (levelname)s: % (message)s")

WEKEO USER = os.getenv ("WEKEO USER")
WEKEO_PASS = os.getenv ("WEKEO_ PASS")
if not WEKEO USER or not WEKEO PASS:
raise SystemExit ("Set WEKEO USER and WEKEO PASS environment variables before running the
script.")

OUTPUT DIR = Path(r"C:\Users\GISlab\DT—Agro_Data\IMPDEN21")
OUTPUT DIR.mkdir (parents=True, exist ok=True)

conf = Configuration (user=WEKEO USER, password=WEKEO PASS)
hda client = Client (config=conf)
logging.info ("HDA client initialized successfully")

search payload = {

"dataset id": "EO:EEA:DAT:HRL:IMP",

"bbox": [
18.743528076164104,
34.67516461419754,
30.539190418918118,
42.019934722677085

]I

"productType": "Imperviousness Density",
"resolution": "100m",
"year": "2021",

"itemsPerPage": 200,
"startIndex": O

products = hda client.search(search payload)
logging.info ("Found %d products.", len(products))

RRF-D3.2 unde e 22|23
[] Greece 2 - Eur:p:a?\yl;:ion |

NATIONAL RECOVERY AND RESILIENCE PLAN NextGenerationEU

[14815 — DT-Agro]

if not products:
logging.error ("No products found. Check your bounding box / dataset id / year.")

else:
for idx, product in enumerate (products, start=1l):
prod id = getattr(product, "id", None) or getattr(product, "identifier", None) or
str (product)
logging.info (" ($d/%d) Processing product: %s", idx, len (products), prod id)
try:
if hasattr (product, "download") and callable (product.download) :
product.download (str (OUTPUT_DIR))
logging.info ("Downloaded product %s to %s", prod id, OUTPUT DIR)
continue
if hasattr(hda client, "download"):
try:
hda client.download(product, directory=str (OUTPUT DIR))
logging.info ("Downloaded product %s via client.download to %s", prod id,
OUTPUT_DIR)
continue
except Exception:
pass

logging.error ("No automatic download method available for product %s.", prod_id)
logging.info ("Product object sample attributes: %s", [a for a in dir(product) if
not a.startswith("_")][:50])

props = getattr (product, "properties", None)
if props:

logging.info ("Product properties keys: %s", list (props.keys())[:50])
else:

logging.info ("No properties attribute on product object; inspect product
representation:")
logging.info (repr (product))

except Exception as e:
logging.error ("Download failed for %s: %s", prod id, e)

logging.info ("Script finished.")
Imperviousness density downloading

RRF-D3.2 unde " 2323
[: Greece 2.0 = !

NATIONAL RECOVERY AND RESILIENCE PLAN NextGenerationEU

