



# Evaluation of digital maps of top-soil properties compared to large-scale laboratory soil data and synergies towards a better European soils' delineation

**Stergia Palli Gravani**, Stylianos Gerontidis, Dimitrios Kopanelis, Orestis Kairis, Konstantinos Soulis, and Dionissios Kalivas

Agricultural University of Athens, Department of Natural Resources Development & Agricultural Engineering, Greece



This project is carried out within the framework of the National Recovery and Resilience Plan Greece 2.0, funded by the European Union — NextGenerationEU (Implementation body: HFRI),









### Introduction

European soil maps are compared with Greek soil data to evaluate their accuracy across key properties like texture, organic carbon, pH and Cation-exchange capacity (CEC) using spatial and statistical comparisons.

In this presentation we focus on soil texture

### Objective:

- Evaluate the accuracy and representativeness of European soil datasets, incorporating statistical methods to optimize analysis and draw useful conclusions.
- Explore spatial correlation and identify spatial discrepancies and their causes.
- Highlight the value of integrating national soil data for improved continental-scale mapping.
- Offer recommendations for future global soil data initiatives.

# Soil mapping techniques

#### Comparison of Traditional vs Predictive Soil Mapping

| Criteria                 | Traditional Soil Mapping                                                                    | Predictive Soil Mapping                                                                                    |
|--------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Data Collection          | Relies on field surveys and soil sampling, often resulting in limited data points           | Utilizes extensive datasets, including remote sensing and geospatial data, allowing for broader coverage.  |
| Accuracy and Reliability | Subject to human error and biases, with accuracy dependent on the expertise of the surveyor | Generally, more accurate but can suffer from data limitations and mathematical errors.                     |
| Applications             | Best suited for localized studies or regions with extensive field data                      | Ideal for large-scale assessments and cross-boundary issues, essential for regional and national planning. |
| Cost and Time Efficiency | More time-consuming and expensive due to the need for fieldwork                             | More cost-effective and faster as it leverages existing datasets and computational techniques.             |

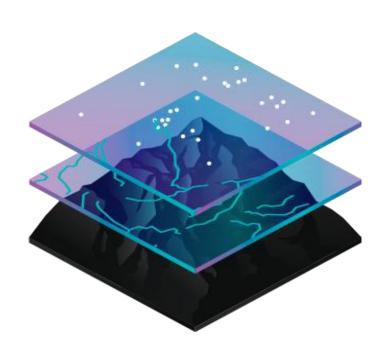
## Origin of evaluated international data



#### **ISRIC (International Soil Reference and Information Centre - SoilGrids)**

Global soil properties prediction system with 250 m resolution, updated in 2016.

- Provides data for Organic Carbon, pH, soil texture, (6 depth levels)
- Was created based on 150,000 soil profiles, satellite data from MODIS, SRTM DEM
   & climate images, 158 spatial variables
- Machine learning methods: Random Forest Gradient Boosting Implemented in R
- Generated 280 raster layers, enhancing the mapping of global soil features.




#### **ESDAC (European Soil Data Centre)**

Includes soil properties raster files with a resolution of 500 m.

- Created by interpolating the LUCAS 2009 file (surface soil samples) using hybrid approaches like regression kriging.
- Regression models were fitted using, along other variables, remotely sensed data coming from the MODIS sensor.
- Provides rater layers for many soil properties such as: % of sand, silt and clay etc.

## Origin of Greek observed data





#### **Greek Soil Map (GR)**

- Digital map providing detailed information about the soils of Greece, which includes Physical, chemical, mechanical properties.
- Uses & applications: good agricultural practice, land management, agricultural decision making
- Includes 10,058 sampling points

# Data processing methodology

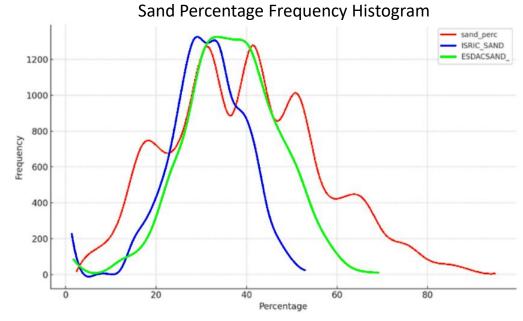


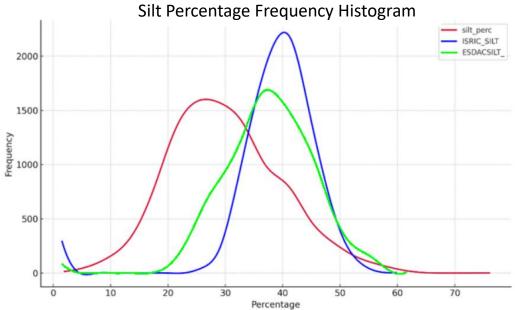
#### **Spatial Soil Properties – ISRIC - ESDAC**

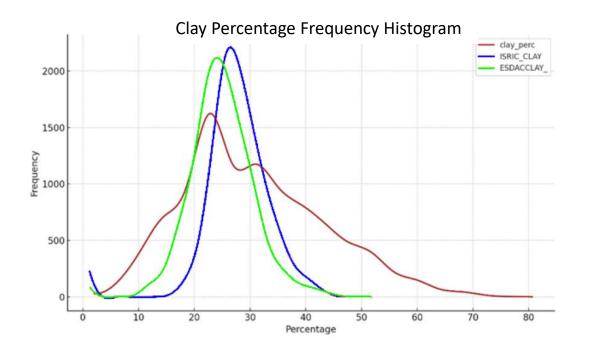
- Subset multidimensional rasters to obtain the selected soil properties only for topsoil (0-30 cm).
- Target soil properties: Sand, Clay, and Silt percentages (soil texture classes).
- Resulted raster layers were clipped in the study area (Greece) and projected in the official Greek coordinates system (Greek Grid).



 Creation of a single point feature layer with the measured values for all the examined attributes.

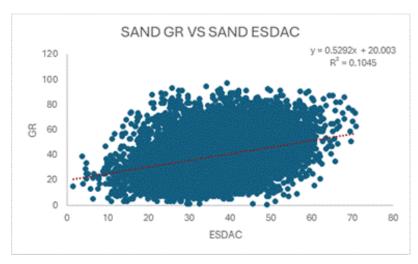

#### **Analysis**


- Sampling each soil property from the raster layer for the location of each point and joining with Greek soil map point layer
- Calculation of the differences between measured values and ISRIC and ESDAC predicted values for each soil property and for each point.
- Univariate statistics for each class (sand, clay, silt)
- Spatial Analysis of errors



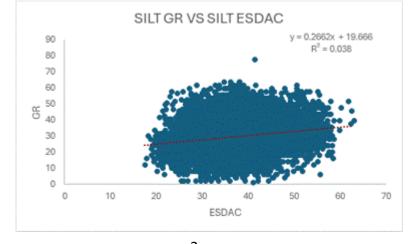




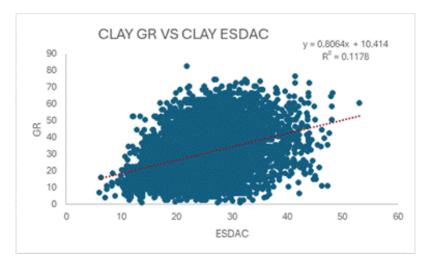







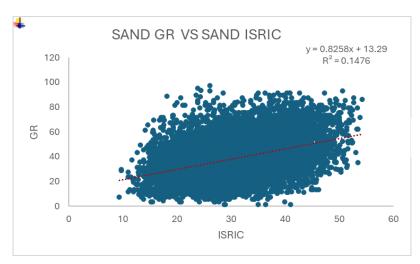


|        | SAND  |       |       | CLAY  |       |       | SILT  |       |       |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|        | GR    | ESDAC | ISRIC | GR    | ESDAC | ISRIC | GR    | ESDAC | ISRIC |
| Mean   | 39.69 | 37.06 | 31.76 | 30.60 | 25.08 | 28.26 | 29.70 | 37.86 | 39.98 |
| Median | 39.30 | 36.80 | 31.57 | 28.70 | 24.79 | 27.73 | 28.00 | 37.86 | 39.93 |

#### Relationship between the ESDAC dataset and the Greek Soil Map (GR)



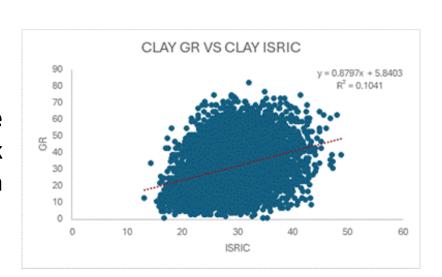

 $R^2 = 0.1045$ Slope = 0.5292

R<sup>2</sup> values very low → weak correlation between observed and measured data
Low slope values → overestimation in all properties

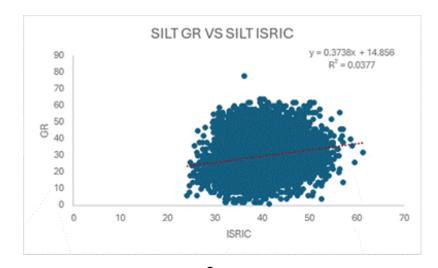



 $R^2 = 0.038$ Slope = 0.2662




 $R^2 = 0.1178$ Slope = 0.8064

#### Relationship between the ISRIC dataset and the Greek Soil Map (GR)

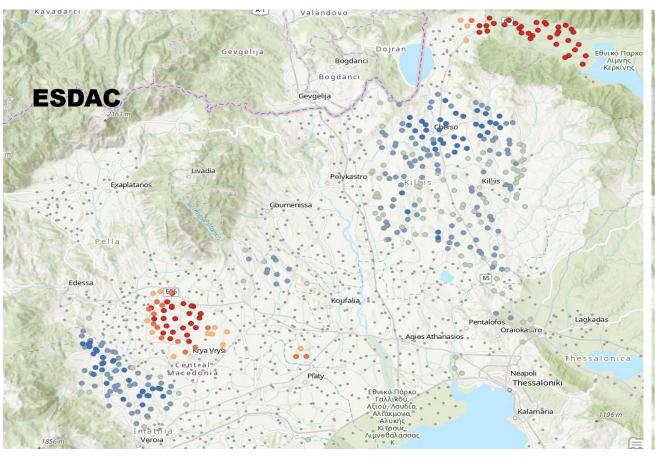


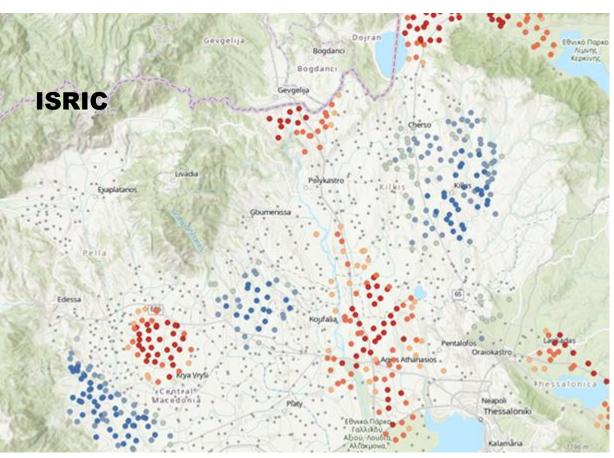

 $R^2 = 0.1476$ Slope = 0.8258

Coefficients of determination are relatively low, implying a weak correlation and substantial data variability



 $R^2 = 0.1041$ Slope = 0.8797

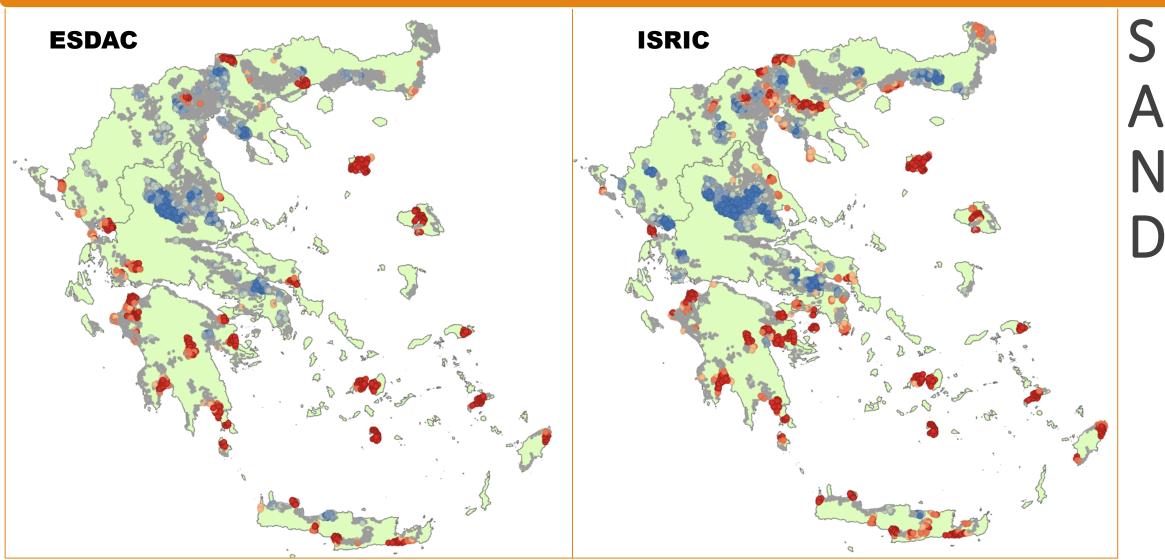




 $R^2 = 0.0377$ Slope = 0.3738

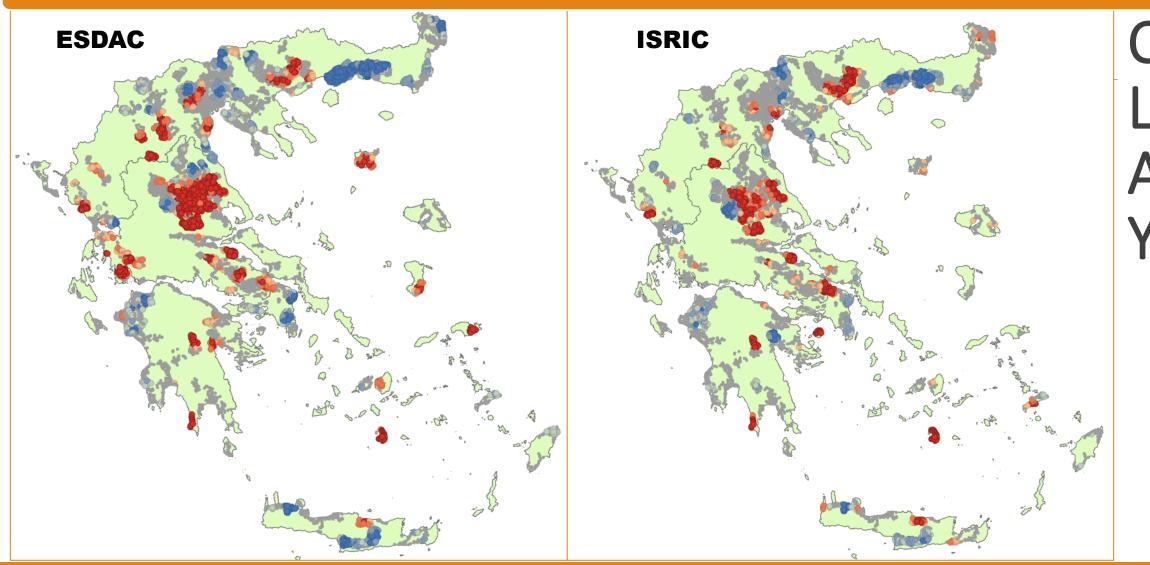
RMSE values were calculated for each soil property
High RMSE values indicate substantial errors

|      | RMSE ISRIC | RMSE ESDAC |
|------|------------|------------|
| SILT | 14.45      | 14.04      |
| SAND | 18.55      | 17.18      |
| CLAY | 13.20      | 13.69      |

#### Hot Spot Analysis (Characteristic example) **SAND**

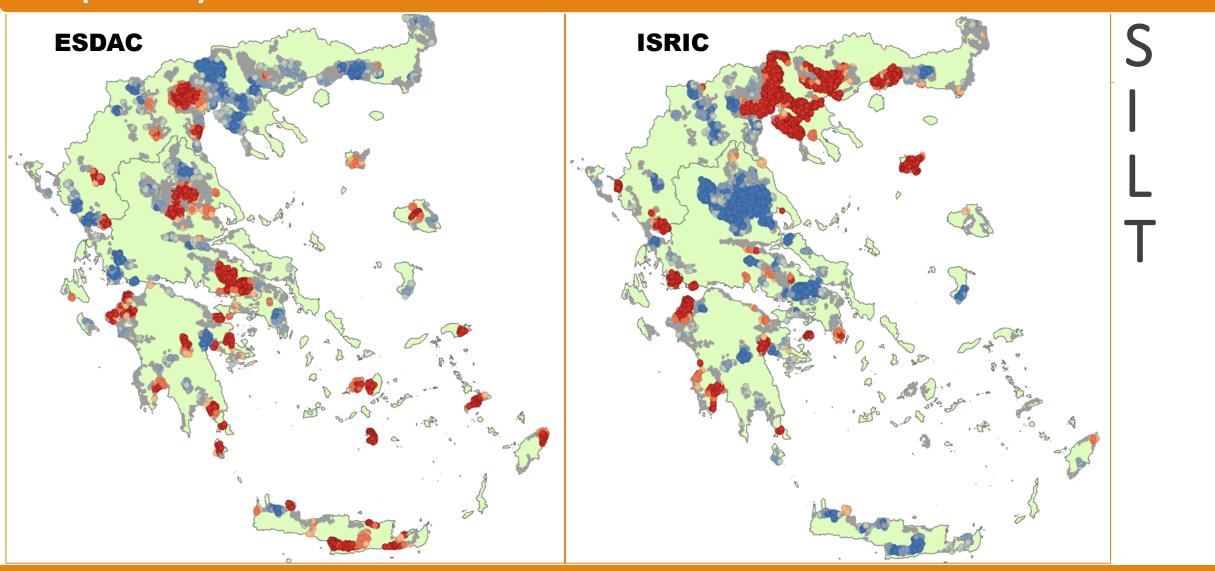






- Large difference between datasets
- Small difference between datasets

- Cold Spot with 99% Confidence
- Cold Spot with 95% Confidence
- Cold Spot with 90% Confidence
- Not Significant
- Hot Spot with 90% Confidence
- Hot Spot with 95% Confidence
- Hot Spot with 99% Confidence

### **Hot Spot Analysis**




### **Hot Spot Analysis**



L A Y

### **Hot Spot Analysis**



# Results – Accuracy of estimation of soil texture classes

#### **GR VS ISRIC**

#### **GR VS ESDAC**

**Overall accuracy** 

0.204095835

| Class              | Producer's accuracy | User's<br>accuracy | Overall accuracy | Class              | Producer's accuracy | User's<br>accuracy |
|--------------------|---------------------|--------------------|------------------|--------------------|---------------------|--------------------|
| Clay               | 0.01602262          | 0.311926606        | 0.188955558      | Clay               | 0.007445323         | 0.228571429        |
| Clay Loam          | 0.410233789         | 0.248929336        |                  | Clay Loam          | 0.260232658         | 0.243941842        |
| Loam               | 0.505322924         | 0.158151932        |                  | Loam               | 0.530598053         | 0.161174482        |
| Loamy Sand         | 0                   | 0                  |                  | Loamy Sand         | 0.005934718         | 0.4                |
| Sand               | 0.02173913          | 0.027027027        |                  | Sand               | 0                   | 0                  |
| Sandy Clay         | 0                   | 0                  |                  | Sandy Clay         | 0                   | 0                  |
| Sandy Clay<br>Loam | 0.018698579         | 0.265957447        |                  | Sandy Clay<br>Loam | 0.132034632         | 0.332727273        |
| Sandy Loam         | 0.066031746         | 0.403100775        |                  | Sandy Loam         | 0.283312578         | 0.325931232        |
| Silt Loam          | 0.086734694         | 0.059233449        |                  | Silt Loam          | 0.085427136         | 0.049707602        |
| Silty Clay         | 0.043478261         | 0.128205128        |                  | Silty Clay         | 0.008583691         | 0.042553191        |
| Silty Clay<br>Loam | 0.093283582         | 0.034387895        |                  | Silty Clay<br>Loam | 0.04029304          | 0.030726257        |

### Conclusions

- Initial results provide mixed picture with differences between the datasets greatly varying
- The comparison revealed spatially variable differences between the datasets
- Discrepancies more pronounced in areas in areas with distinct soil characteristics, such as fine-textured soils.
- Findings emphasize the importance of integrating detailed national soil data to enhance the accuracy of continental-scale digital soil maps.
- Results highlight the need for data integration from multiple sources to capture soil variability more effectively.
- The study contributes to the development of more robust and reliable global soil datasets.
- It offers practical recommendations for improving future soil mapping initiatives.
- Further research should focus on interpretation of errors clusters (e.g. geomorphology, geology, land cover, sampling density etc.) to improve datasets.





# Thank you!

This project is carried out within the framework of the National Recovery and Resilience Plan Greece 2.0, funded by the European Union – NextGenerationEU (Implementation body: HFRI), <a href="https://greece20.gov.gr">https://greece20.gov.gr</a>





